12 research outputs found

    Parallel Minimum Cuts in Near-linear Work and Low Depth

    Full text link
    We present the first near-linear work and poly-logarithmic depth algorithm for computing a minimum cut in a graph, while previous parallel algorithms with poly-logarithmic depth required at least quadratic work in the number of vertices. In a graph with nn vertices and mm edges, our algorithm computes the correct result with high probability in O(mlog4n)O(m {\log}^4 n) work and O(log3n)O({\log}^3 n) depth. This result is obtained by parallelizing a data structure that aggregates weights along paths in a tree and by exploiting the connection between minimum cuts and approximate maximum packings of spanning trees. In addition, our algorithm improves upon bounds on the number of cache misses incurred to compute a minimum cut

    Learning Combinatorial Node Labeling Algorithms

    Full text link
    We present a graph neural network to learn graph coloring heuristics using reinforcement learning. Our learned deterministic heuristics give better solutions than classical degree-based greedy heuristics and only take seconds to evaluate on graphs with tens of thousands of vertices. As our approach is based on policy-gradients, it also learns a probabilistic policy as well. These probabilistic policies outperform all greedy coloring baselines and a machine learning baseline. Our approach generalizes several previous machine-learning frameworks, which applied to problems like minimum vertex cover. We also demonstrate that our approach outperforms two greedy heuristics on minimum vertex cover

    GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

    Full text link
    We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by up to >2x), maximal clique listing (by up to >9x), k-clique listing (by 1.1x), and subgraph isomorphism (by up to 2.5x), also obtaining better theoretical performance bounds

    Routing in stochastic public transit networks

    No full text
    We present robust, adaptive routing policies for time-varying networks (temporal graphs) in the presence of random edge-failures. Such a policy answers the following question: How can a traveler navigate a time-varying network where edges fail randomly in order to maximize the traveler's preference with respect to the arrival time? Our routing policy is computable in near-linear time in the number of edges in the network (for the case when the edges fail independently of each other). Using our robust routing policy, we show how to travel in a public transit network where the vehicles experience delays. To validate our approach, we present experiments using real-world delay data from the public transit network of the city of Zurich. Our experiments show that we obtain significantly improved outcomes compared to a purely schedule-based policy: The traveler is on time 5-11 percentage points more often for most destinations and 20-40 percentage points more often for certain remote destinations. Our implementation shows that the approach is fast enough for real-time usage. It computes a policy for 1-hour long journeys in around 0.1 seconds.ISSN:2190-680

    Streaming Task Graph Scheduling for Dataflow Architectures

    No full text
    Dataflow devices represent an avenue towards saving the control and data movement overhead of Load-Store Architectures. Various dataflow accelerators have been proposed, but how to efficiently schedule applications on such devices remains an open problem. The programmer can explicitly implement both temporal and spatial parallelism, and pipelining across multiple processing elements can be crucial to take advantage of the fast on-chip interconnect, enabling the concurrent execution of different program components. This paper introduces canonical task graphs, a model that enables streaming scheduling of task graphs over dataflow architectures. We show how a task graph can be statically analyzed to understand its steady-state behavior, and we use this information to partition it into temporally multiplexed components of spatially executed tasks. Results on synthetic and realistic workloads show how streaming scheduling can increase speedup and device utilization over a traditional scheduling approach

    The spatial computer: A model for energy-efficient parallel computation

    Full text link
    We present a new parallel model of computation suitable for spatial architectures, for which the energy used for communication heavily depends on the distance of the communicating processors. In our model, processors have locations on a conceptual two-dimensional grid, and their distance therein determines their communication cost. In particular, we introduce the energy cost of a spatial computation, which measures the total distance traveled by all messages, and study the depth of communication, which measures the largest number of hops of a chain of messages. We show matching energy lower and upper bounds for many foundational problems, including sorting, median selection, and matrix multiplication. Our model does not depend on any parameters other than the input shape and size, simplifying algorithm analysis. We also show how to simulate PRAM algorithms in our model and how to obtain results for a more complex model that introduces the size of the local memories of the processors as a parameter

    High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality

    No full text
    We develop the first parallel graph coloring heuristics with strong theoretical guarantees on work and depth and coloring quality. The key idea is to design a relaxation of the vertex degeneracy order, a well-known graph theory concept, and to color vertices in the order dictated by this relaxation. This introduces a tunable amount of parallelism into the degeneracy ordering that is otherwise hard to parallelize. This simple idea enables significant benefits in several key aspects of graph coloring. For example, one of our algorithms ensures polylogarithmic depth and a bound on the number of used colors that is superior to all other parallelizable schemes, while maintaining workefficiency. In addition to provable guarantees, the developed algorithms have competitive run-times for several real-world graphs, while almost always providing superior coloring quality. Our degeneracy ordering relaxation is of separate interest for algorithms outside the context of coloring
    corecore